
This PH-WS design guideline written for DHA healthcare facilities, is a consolidated document listing out the design requirements for all new construction and major renovation healthcare projects, within the Emirate of Dubai, under the licensure of DHA.

Water supply is a essential for every development. In healthcare facilities, the importance of clean hygienic, and a good quality of water are critical. This has an impact on infection control parameters, equipment, staff and patients. Potable water supply must be treated and monitored to ensure that bacteria such as legionella is eliminated. Hence, the temperature maintenance and treatment of water in healthcare facilities play a pivotal role.

The requirements outlined in these guidelines are not intended to conflict with Federal Regulations, Local Municipality Laws, Executive Orders, or the needs of the end users.

This document is intended for the Architect/Engineer (A/E) and others engaged in the design and renovation of DHA facilities. Where direction described in applicable codes are in conflict, the A/E shall comply with the more stringent requirement. The A/E is required to make themselves aware of all applicable codes.

The document should be read in conjunction with other parts of the Health Facility Guidelines (Part A to Part F) & the typical room data sheets and typical room layout sheets.

5.1 Aim & Objectives

The Aim of this section of the guidelines is to promote the correct design of water systems for healthcare facilities in the emirate of Dubai, under the jurisdiction of the Dubai Health Authority (DHA).

The scope of the Water Systems design will include the following:
• Potable Cold-Water System
• Potable Cooled-Cold Water Systems
• Water Treatment System
• Hot Water Systems
• Healthcare Sanitary Fittings
• Irrigation Systems
• Grey-Water Systems
• Steam Systems

5.2 General

1. The design, installation and commissioning of the potable water systems are very critical for healthcare facilities. Especially for patients, visitors and operators. Many systems and operations in healthcare facilities are dependent on clean, treated water being provided for patient and staff as well as for the use of medical equipment.

2. Reliability and resiliency of water system is also crucial. Thus, it is important to ensure that disruption in water supply from the network or via main storage tanks are eliminated or reduced to the lowest risk possible. The designer for healthcare facilities needs to be aware that many activities within any healthcare facility depend on clean uninterrupted water supply. The engineer needs to ensure that although there may be a requirement of providing sufficient water storage, the engineer needs to take note that there must also be sufficient water movement to prevent water stagnation in the storage tank and the pipe system.

3. To ensure clean, safe hygienic water, the discussion of the control of waterborne pathogens must be considered. Pseudomonas Aeruginosa is where water outlet to patient transfer can take place. Generally, serious Pseudomonas infections occur in patients, visitors and hospital
operators staff within healthcare facilities. Therefore, water treatment as well as the monitoring of water within healthcare facilities is a must to ensure the correct water quality is provided.

### 5.3 Design Codes & Standards

The water system will be designed in accordance with the latest edition and requirements of the relevant standards, codes and guidelines issued by Dubai Authorities having jurisdiction and internationally recognised institutions including but not limited to the entities listed below. Where there is a conflict between local and international standards, then the one that falls in line with the Dubai Health Authority guidelines shall take precedence.

<table>
<thead>
<tr>
<th>Code Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Local Standards</strong></td>
<td></td>
</tr>
<tr>
<td>Water Network</td>
<td>Dubai Electricity &amp; Water Authority Regulations</td>
</tr>
<tr>
<td>Water &amp; Drainage for Buildings</td>
<td>Uniform Code of Plumbing, Abu Dhabi</td>
</tr>
<tr>
<td>DHA</td>
<td>Dubai Health Authority - Guidelines</td>
</tr>
<tr>
<td>Al Sa’fat</td>
<td>Dubai Al Sa’fat Green Building System</td>
</tr>
<tr>
<td><strong>International Standards</strong></td>
<td></td>
</tr>
<tr>
<td>BS EN 805</td>
<td>Water Supply System</td>
</tr>
<tr>
<td>BS 6700</td>
<td>Design, Installation, testing and maintenance of services supplying water for domestic use within buildings.</td>
</tr>
<tr>
<td>BS EN 12201</td>
<td>Polyethylene Specification for Water Systems</td>
</tr>
<tr>
<td>BS EN 1057</td>
<td>Copper Specification</td>
</tr>
<tr>
<td>Reference</td>
<td>Description</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>HTM 04-01</td>
<td>Safe water in healthcare premises. (Part A, B, C &amp; D)</td>
</tr>
<tr>
<td>HTM 07-04</td>
<td>Water Management &amp; Water Efficiency Best Practice for Healthcare Sector</td>
</tr>
<tr>
<td>HBN-13</td>
<td>Sterile Services Department (SSD or CSSD)</td>
</tr>
<tr>
<td>HBN-07-01 &amp; 02</td>
<td>Satellite Dialysis Unit &amp; Main Renal Unit</td>
</tr>
<tr>
<td>IoP</td>
<td>Institute of Plumbing – Plumbing Engineering Services Design Guide</td>
</tr>
<tr>
<td>IPC</td>
<td>International Plumbing Code</td>
</tr>
<tr>
<td>UPC</td>
<td>Uniform Plumbing Code</td>
</tr>
<tr>
<td>ASPE</td>
<td>American Society of Plumbing Engineers</td>
</tr>
<tr>
<td>CIBSE Guide G</td>
<td>Charted Institute of Building Services Engineers Guide - Public</td>
</tr>
<tr>
<td></td>
<td>Health &amp; Plumbing Engineering Guide</td>
</tr>
<tr>
<td>ASHRAE Applications</td>
<td>American Society of Heating &amp; Refrigeration Air Conditioning</td>
</tr>
<tr>
<td></td>
<td>Engineers Applications, Chapter 50</td>
</tr>
<tr>
<td>HSE – L8</td>
<td>The control of legionella bacteria in water systems.</td>
</tr>
<tr>
<td>WSR – 1999</td>
<td>Water Supply Regulations (Water Fittings) 1999 (U.K)</td>
</tr>
<tr>
<td>Laboratory Safety Guidance – OSHA</td>
<td>Laboratory Safety Guidance – OSHA</td>
</tr>
<tr>
<td>NRC</td>
<td>Nuclear Regulatory Commission (NRC)</td>
</tr>
<tr>
<td>WHO-1</td>
<td>WHO - Guidelines for Drinking Water Quality</td>
</tr>
<tr>
<td>WHO-2</td>
<td>WHO - Guidelines for Safe Recreational- Water Environments</td>
</tr>
<tr>
<td></td>
<td>Vol 2 - Chapter 5 - Managing Water &amp; Air Quality</td>
</tr>
</tbody>
</table>
5.4 Glossary & Abbreviations

**Above Ground Installation** – System installations that are not buried, i.e. within the basement space and floors above.

**Backflow** – Flow upstream, that is in a direction contrary to the intended normal direction of flow, within or from a water fitting.

**Biofilm** – a complex layer of microorganisms that have attached and grown on a surface. This form of growth provides a niche environment for a wide range of microorganisms to interact and where the secretion of exopolysaccharides by bacteria will form an extracellular matrix for both bacteria and other unicellular organisms such as amoebae and flagellates to remain in a protected state.

**COSHH** – Control of Substances Hazardous to Health [Regulations]

**CQC** – Care Quality Commission

**Dead-leg** – a length of water system pipework leading to a fitting through which water only passes infrequently when there is draw off from the fitting, providing the potential for stagnation.

**DEWA – Dubai Electricity & Water Authority**: The authority responsible for the safety of water that establishes good practices in local water distribution and supply. It will identify potential hazards, consider practical aspects, and detail appropriate control measures. They are the governing body for potable in the Emirate of Dubai.

**DHA** – Dubai Health Authority

**DWI** – Drinking Water Inspectorate
**Healthcare-associated infections (HCAI)** – encompasses any infection by any infectious agent acquired as a consequence of a person’s treatment or which is acquired by a healthcare worker in the course of their duties.

**Healthcare facility/building** – all buildings, infrastructure, equipment, plant, embedded systems and related items that support the delivery of healthcare and services of all types, irrespective of their ownership or operation by third parties.

**Healthcare Operator**: organisations that provide or intend to provide healthcare services for the purposes of the DHA.

**HSG274 Part 2** – The Health & Safety Executive’s technical guidance on the control of Legionnaires’ disease in hot and cold-water systems

**HTM** – Health Technical Memorandum

**Point-of-use (POU) filter** – a filter with a maximal pore size of 0.2 μm applied at the outlet, which removes bacteria from the water flow.

**Redundant pipework (also known as blind end)**: a length of pipe closed at one end through which no water passes.

**Thermostatic mixing valve**: valve with one outlet, which mixes hot and cold water and automatically controls the mixed water to a user-selected or pre-set temperature.

**Waterborne pathogen**: microorganism capable of causing disease that may be transmitted via water and acquired through ingestion, bathing, or by other means.

**Water outlet**: (In this document) refers mainly to taps and showerheads, but other outlets, as indicated by risk assessments, may be considered important.

**Water supply [to the healthcare facility]**: The water supplied can be via:
- the mains water supply from the local water undertaker;
- a borehole (operated by the healthcare organisation as a private water supply);
- a combination of mains water and borehole supply;
- emergency water provision (bulk tankered water or bottled drinking water).

**WRAS** – Water Regulations Advisory Scheme

### 5.5 Design Criteria

1. Healthcare facilities relay heavily on safe clean and hygienic water for patients, visitors, staff, and for clinical care areas. As well as complying with the design outlined in this part of the guidelines, the system components will need to comply with other recognised water regulating bodies such as WRAS, AWWA and DEWA requirements. Where there is a clash the international recognised requirements and local standards, the local DEWA standards shall take precedence.

2. One of the most important factors regarding water quality is the concern of legionnaires disease. The control and elimination of legionella is very crucial, and measure must be provided. The United Kingdom's Health and Safety Executive (HSE)274 & L8, provides one of the best Approved Code of Practice and guidance on regulations ‘Legionnaires’ disease: The control of legionella bacteria in water systems.

3. Metals in contact with water will also influence the quality of potable wholesome water. Therefore, for any material that is contact with water used for wholesome purposes shall all conform to BS 6920: 2000 Part 1 & 2 and Part 3 (Hot Water Service) for non-metallic materials or equivalent international standards i.e. WRAS approved fitting.

4. All materials that do comply with BS 6920: 2000 Part 1 & 2 and Part 3 (Hot Water Service) for non-metallic materials need to also be approved by DEWA.
5. The importance of the approval highlights the fact that materials (metal or non-metal) used for water distribution produce effects from the water such as colour, smell, flavour, turbidity, release of toxic metals, support of microbial growth and even reduce the quality of the water. For example, WRAS approval can be provided for to 60 months for a specific product, depending on the fact that method of manufacture, source or nature ingredients do not change in the life time of the approval.

6. If a supplier or manufacturer wishes to make any modifications, he must notify the approving body, this may be a U.K, U.S, European or local approving body as well as have that product tested to the requirements of these bodies.

7. The provision of potable wholesome water to the healthcare facility as well as ensuring that the quality of water in the facility is approved is governed by DEWA. The healthcare facility owner is obligated to preserve the quality of water according to the outline highlighted within these guidelines.

8. It is recommended that plumbing installation contractors and companies have the appropriate qualifications and the industry knowledge and competence of installing the correct system suitable for healthcare facilities Healthcare facilities rely heavily on safe clean and hygienic water for patients, visitors, staff, and for clinical care areas.

5.6 **Source of Water Supply**

1. The source of water for healthcare facilities is very important as the incoming water quality varies. Depending on the water source the incoming TDS/PPM can vary from 2000 PPM to 80PPM. Water must be treated to reach water quality levels of 0 – 150PPM.

2. The following water sources are acceptable for healthcare facilities:

   - Connection from the Potable Water Network Supplier
• Service Connection for Potable Water Trucks
• Underground Water Wells
• Bore Hole

3. Healthcare facilities shall ensure that they have second water supply to the facility.

4. A second water supply can only be provided from the one of sources mentioned above (5.6 – 2).

5. The Incoming water supply from the sources mentioned above must be checked via a water quality report.

6. The Water report is to be used to provide the correct water quality design to the healthcare facility as well as the current flow requirements being provide from the network.

7. The water sources to the healthcare facility must be spilt into two systems for resiliency, redundancy and to avoid having a concern of inadequate water supply to the system. One supply will be an emergency supply to the system.

8. Water functions as one of the main deterrent for infection concerns and continuing to provide a clean and hygienic water supply to the facility. Hence, the system must be resilient system. This resiliency must be separate from the extra potable water storage (discussed in section 5.6)

9. Both the main incoming supply as well as the emergency water supply will need to have components to protect the system healthcare facility from infection. This is provided through backflow prevention valves or Double Check Valves. The valve detail below provides an example of:
Diagram 5.1A – Incoming Mains Water Valve Detail Buried at the Ground Floor

Diagram 5.1B – Incoming Mains Water Valve Detail at High Level Ground Floor or Basement (Water Meter Shown)
Diagram 5.1C – Incoming Mains Water Valve Detail at High Level Ground Floor or Basement (Without Water Meter Shown)

10. Diagrams 5.1A, 5.1B and 5.1C show an emergency water truck connection allowance as a redundancy measure in situations where the main water network will fail or in areas where the water network has not been established or a provision from the network has not been provided by the local authority.

11. To provide the most efficient water quality with the correct water treatment system installed, the following information must be known from the incoming water quality report:
   
   • Details of the elements and organisms in the source water supply such as the amount of metals, micro-biological etc.
   
   • The process or method of water purification used by the network provider chemical, a Reverse Osmosis treatment etc.

12. The design must take into consideration the maximum foreseeable water consumption and average flows as well as peak loads and pressure required from the DEWA water network.

13. The possibility of contaminated land is not and currently an issue in Dubai. But, due to Dubai’s developing nature and vision, this may come a concern like many other western countries. Therefore, the engineer should take note of the current site condition.
There a number of direct connections that will be connected to the system. Depending on the system resiliency of the existing potable water system, the design engineer may request two potable supply lines. 1 no. for the main storage tank and a second to vital facility support areas. The sum of the healthcare facility being designed does factor in in this request. For example:

- If the facility is small (LDR 1-3), it may only require connection to the storage tank and a connection to the dirty utility, clean utility rooms.
- If the facility is large complex facilities (LDR 4-6), a larger storage system may be required instead of two systems. (In Dubai this will be the main design approach)

During the stages of design, the design engineer must inform DEWA of the hospital water consumption as outlined in Part A of these guidelines.

The water design for the healthcare facility must obtain approval from DEWA before any installation is carried out. The engineer must ensure that the following information is submitted:

- Service Connection Details
- Access to Valve Assemblies and Water Meters
- Flushing By-Pass
- Provisions for Fire & Rescue Service (If applicable)

5.7 Quality of Water Supply

In Dubai, there may be times in the year when the water supply from the network supplying the healthcare facility is interrupted and the network provider may provide the water supply from a different source to maintain the supply for the required demand. The change in water supply will most likely have different quality of water such as water hardness, metallurgy etc.
This change in water supply may cause issues such as scaling on hot water items. Water hardness can increase by at least 50% more in hardness when services change.

2. The design engineer will need to provide a strategy to ensure that water treatment is provided from the point of supply up until its use by the users. Below is a table that consists of DEWA as well as internationally recognised levels of potable water requirements.

*Please note:* For renal dialysis areas, the water quality will need to go through another phase of treatment as the levels of certain elements will need to be limited (Mainly copper and Silver as well as no use of chemical water treatment).
<table>
<thead>
<tr>
<th>Factor</th>
<th>Standard</th>
<th>Factor</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>20°C</td>
<td>Calcium</td>
<td>250 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>5.5-9.5</td>
<td>Potassium</td>
<td>12 mg/l</td>
</tr>
<tr>
<td>Colour</td>
<td>20 Hazen Units</td>
<td>Sodium</td>
<td>150 mg/l</td>
</tr>
<tr>
<td>Turbidity</td>
<td>4 Formazin Units</td>
<td>Copper</td>
<td>3000 μg/l</td>
</tr>
<tr>
<td>Qualitative Odour</td>
<td>All Odour Investigations</td>
<td>Zinc</td>
<td>5000 μg/l</td>
</tr>
<tr>
<td>Qualitative Taste</td>
<td>All Taste Investigations</td>
<td>Lead</td>
<td>50 μg/l</td>
</tr>
<tr>
<td>Dilution Odour &amp; Dilution</td>
<td>Dilution No. 3 at 20°C</td>
<td>Silver</td>
<td>10 μg/l</td>
</tr>
<tr>
<td>Taste</td>
<td></td>
<td>Antimony</td>
<td>1000 μg/l</td>
</tr>
<tr>
<td>Conductivity</td>
<td>1500 μS/cm at 20°C</td>
<td>Barium</td>
<td></td>
</tr>
<tr>
<td>Total Hardness – Alkalinity</td>
<td>Applies Only if Water is</td>
<td>Boron</td>
<td>2000 μg/l</td>
</tr>
<tr>
<td>Free Chlorine &amp; Total</td>
<td>Comparison Against</td>
<td>Boron</td>
<td>2000 μg/l</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Average</td>
<td>Cyanide</td>
<td>50 μg/l</td>
</tr>
<tr>
<td>Faecal Coliforms</td>
<td>0 / 100 ml</td>
<td>Cadmium</td>
<td>5 μg/g</td>
</tr>
<tr>
<td>Clostridia</td>
<td>1 / 20 ml</td>
<td>Chromium</td>
<td>50 μg/l</td>
</tr>
<tr>
<td>Faecal Streptococci</td>
<td>0 / 100 ml</td>
<td>Chromium</td>
<td>50 μg/l</td>
</tr>
<tr>
<td>Total Coliforms</td>
<td>0 / 100 ml (95%)</td>
<td>Mercury</td>
<td>1 μg/l</td>
</tr>
<tr>
<td>Colony Count: 2-Day &amp;</td>
<td>Comparison Against</td>
<td>Nickel</td>
<td>50 μg/l</td>
</tr>
<tr>
<td>Colony Count: 3-Day</td>
<td>Average</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidisability</td>
<td>5 mg/l</td>
<td>Selenium</td>
<td>10 μg/l</td>
</tr>
<tr>
<td>Ammonia</td>
<td>0.5 mg/l</td>
<td>Total Organic Carbon</td>
<td></td>
</tr>
<tr>
<td>Nitrite</td>
<td>0.1 mg/l</td>
<td>Trihalomethanes</td>
<td>100 μg/l</td>
</tr>
<tr>
<td>Nitrate</td>
<td>50 mg/l</td>
<td>Tetrachloromethane</td>
<td>3 μg/l</td>
</tr>
<tr>
<td>Chloride</td>
<td>400 mg/l</td>
<td>Trichloroethylene</td>
<td>30 μg/l</td>
</tr>
<tr>
<td>Fluoride</td>
<td>1500 μg/l</td>
<td>Tetrachloroethylene</td>
<td>10 μg/l</td>
</tr>
</tbody>
</table>
The design engineer should consider the type of water treatment used by the water network supplier (DEWA) to ascertain what type of water treatment should be used. In some supplies, the water may have residual chemical treatment used during extreme hot climates and cool weather at different times of the year. This will affect certain immunodeficient patients in the healthcare facility.

The design of the healthcare facility must also consider any possible concerns that will affect the quality of water in the facility such as “dead leg” or stagnate water areas. The design must eliminate these areas.

### 5.8 Potable Cold-Water (Cooled-Water) System

- Many of the water design standards are based on an optimal water temperature limit when discussing cold water systems. In Dubai and in relation to health facilities under DHA jurisdiction, water temperature is very crucial in determining the quality of water that is used in a healthcare facility. Incoming water as well as the water stored can go up to 40°C or

<table>
<thead>
<tr>
<th>Substance</th>
<th>Limit</th>
<th>Description</th>
<th>Test Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphorus</td>
<td>2200 µg/l</td>
<td>Fluoranthene, 3, 4-Benzofluoranthene, 11, 12-Benzofluoranthene, 1, 12-Benzoperylene, Indeno (1, 2, 3-cd) Pyrene</td>
<td>Individual Testing of these Substances to Provide Total</td>
</tr>
<tr>
<td>Sulphate</td>
<td>250 mg/l</td>
<td>Total Polycyclic Aromatic Hydrocarbons (PAHS)</td>
<td>0.2 µg/l</td>
</tr>
<tr>
<td>Magnesium</td>
<td>50 mg/l</td>
<td>Anionic Detergents</td>
<td>200 µg/l</td>
</tr>
<tr>
<td>Aluminium</td>
<td>200 µg/l</td>
<td>Pesticides and Compounds</td>
<td>5 µg/l total</td>
</tr>
</tbody>
</table>

Table 5.1 – Water Quality Table
higher in extreme areas in Dubai. This then becomes an area for bacterial growth, water contamination concerns which will affect the well-being of all users within the healthcare facilities. Many of the most dangerous types of bacteria such as pseudonymous legionella thrives in such stagnate water temperatures. Therefore, potable water must be cooled.

2. The healthcare design for healthcare facilities should ensure that water is cooled and kept cool for the temperatures between 15-20°Deg C, where a maximum temperature of 20°C. This should be done via plate heat exchanger arranged in an N+1 provision. (Heat exchangers will need to be manually switched on a weekly basis to ensure that both are used for the system). The heat exchanger will be connected to the final distribution tank serving the healthcare facility.

3. Cooled water is to be used for wash hand basins, sinks, baths, showers and Shatafs (hand-held bidet).

5.9 Normal Temperature Potable Cold-Water System

1. Water that shall not be cooled, shall still be treated for the purposes for water quality, legionella protection.

2. For this service, potable water service shall only be used in the following:

- WC flushing System.
- Maintenance areas, Work Shops, Back of house areas for services areas.
- Cleaners Sinks
- Bib Tap Points
- Cooling Tower Makeup Water
5.10 Water storage

1. Potable water storage is any healthcare facilities most dependent source of water. The purpose of water storage is to act as a safe net for when the main incoming water supply is interrupted or the continuous flow and service to the healthcare facility is disturbed.

2. Many healthcare guidelines limit the amount of water storage to be kept at 12 hours storage. This will ensure that the prevention of bacterial contamination is kept at a minimum. Water storage provides a back-flow prevention to the system and takes pressure off the incoming potable water distribution network. Furthermore, the risk of stagnate water is kept at a minimum, by ensuring a dynamic flow of emptying and top up is occurring within the tank and thus the healthcare facility is being provided with constant clean water.

*Please Note:* 12-Hour storage shall applied for Dubai Healthcare facilities.

3. For Dubai Healthcare Facilities, the following strategy must be used:
   - 3 days of Potable Water Storage
   - Out of the 3 days, 2 Days are actual Raw Water Storage.
   - The remaining 1 day shall be divided in 2 No. tanks.
   - 1 No. Tank will be treated cold-water (cooled) to serve fixtures mentioned above (5.8-3)
   - 1 No. Tank will be treated Cold water serve non-clinical areas as mentioned above (5.9-2)

4. The main 2-day storage tank shall be concrete, buried or GRP tank(s). The treated water storage tanks must be insulated GRP tanks. Treated water tanks water quality shall be as per Table 5.1. Diagram 5.2 flow diagram shows a more detailed design provision of the water system but provides the design strategy behind the water storage.
Diagram 5.2 – Water System for Healthcare Facilities
5. Potable water supply to the network, must be after the valve assembly shown in Figure 6.1. In some facilities, the valve assembly may be part of an existing building or include a water meter requirement, nevertheless the valve assembly must always made of valves shown in Figure 5.1.

6. For water storage tanks used for healthcare facilities, the water must be designed to minimise the risk of water stagnation and the deterioration of water quality. Low level chemical treatment as well as circulation pumps must be provided.

7. When determining how to size the water storage to meet the required capacity, this should be based on the peak demand and the rate of water supply make up from the main external water source.

8. For general potable water sizing, water demand or loading units are used for calculations. These contain a natural water diversity factor.

9. There is no diversity factor to be considered for special departments such as SSU’s, Laboratories, Renal Dialysis etc. This will be sized with full provision.

10. As mentioned in Part A of these guidelines, there are many different types of healthcare facilities using the RDL 1-6 designation. Tables 5.2 (below) provides the water demand based on a KPU (bed numbers) for hospitals as bench mark requirement, this is only to be used in the early stages of design calculations.

<table>
<thead>
<tr>
<th>General Hospital – RDL 4-5 (Acute Healthcare Facilities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Beds</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>0-50</td>
</tr>
<tr>
<td>51-100</td>
</tr>
<tr>
<td>101-200</td>
</tr>
<tr>
<td>201-400</td>
</tr>
</tbody>
</table>
### Centre of Excellence – RDL 5-6 (Specialist Acute Healthcare Facility)

<table>
<thead>
<tr>
<th>Number of Beds</th>
<th>Average Water Consumption (Litres Per Day Per Bed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>319</td>
</tr>
<tr>
<td>26-50</td>
<td>347</td>
</tr>
<tr>
<td>51-100</td>
<td>362</td>
</tr>
<tr>
<td>101-200</td>
<td>479</td>
</tr>
<tr>
<td>Over 199</td>
<td>530</td>
</tr>
</tbody>
</table>

### LTC – (Long Term Care)

<table>
<thead>
<tr>
<th>Number of Beds</th>
<th>Average Water Consumption (Litres Per Day Per Bed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-50</td>
<td>180</td>
</tr>
<tr>
<td>51-100</td>
<td>269</td>
</tr>
<tr>
<td>101-200</td>
<td>247</td>
</tr>
<tr>
<td>201-300</td>
<td>217</td>
</tr>
<tr>
<td>Over 300</td>
<td>306</td>
</tr>
</tbody>
</table>

### Recovery and Convalescent Facilities

<table>
<thead>
<tr>
<th>Number of Beds</th>
<th>Average Water Consumption (Litres Per Day Per Bed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-25</td>
<td>216</td>
</tr>
<tr>
<td>26-50</td>
<td>206</td>
</tr>
<tr>
<td>51-100</td>
<td>185</td>
</tr>
<tr>
<td>Over 100</td>
<td>181</td>
</tr>
<tr>
<td>Geriatric &amp; Chronic illness Facilities</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Number of Beds</td>
<td>Average Water Consumption (Litres Per Day Per Bed)</td>
</tr>
<tr>
<td>0-50</td>
<td>246</td>
</tr>
<tr>
<td>51-100</td>
<td>203</td>
</tr>
<tr>
<td>101-200</td>
<td>164</td>
</tr>
<tr>
<td>Over 200</td>
<td>127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Psychiatric Facilities</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Beds</td>
<td>Average Water Consumption (Litres Per Day Per Bed)</td>
<td></td>
</tr>
<tr>
<td>0-100</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>101-200</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>201-400</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Over 400</td>
<td>350</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Facilities</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Beds</td>
<td>Average Water Consumption (Litres Per Day Per Bed)</td>
<td></td>
</tr>
<tr>
<td>0-100</td>
<td>680</td>
<td></td>
</tr>
<tr>
<td>101-200</td>
<td>866</td>
<td></td>
</tr>
<tr>
<td>201-300</td>
<td>830</td>
<td></td>
</tr>
<tr>
<td>301-500</td>
<td>904</td>
<td></td>
</tr>
<tr>
<td>Over 500</td>
<td>1228</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2 – Water Consumption Data for Healthcare Facility types in relation to number of beds

11. A number of healthcare facilities may include residences for doctors and nurses being served from the main hospital potable water system. The designer is to take the data based on the healthcare definitions mentioned in Table 5.2.
12. The water consumption figures provided in Table 5.2, do consider special departments such as SSU, Laundry etc.

13. In later stages of design, this requirement will be more detailed, and these departments will require a separate provision.

5.10.1 Water Storage Tank Locations

1. The strategy in the past was to provide two sets of potable water storage tanks (not including fire). 1 No. tank at the incoming main (basement or ground floor) and 1 No. at the roof of the healthcare facility. This strategy may continue to be used for healthcare facilities due to the site space restrictions, flood risks which could contaminate the potable water source for the facility.

2. A flood risk assessment must be carried out to determine the best location of the potable water tanks.

3. If there is a risk of flooding the potable water tanks must not be placed in areas of flooding risk such as the basement, ground floor etc.

4. If there is no risk of flooding the potable water tank must be located at the lower levels of any healthcare facility (basement, ground floor etc).

5. To ensure resiliency in the system and not to solely depend on gravity roof water tank approach, the booster pumps will need to be connected to emergency power. This ensures that the potable water supply will be available to all sanitary fittings within the facility.

6. The risk assessment must consider the following concerns for possible potable water contamination:

   - Location in relation foul & waste water drainage
   - Ingress of insects, rodents, dust, sand, debris etc.
   - Danger of oil or fuel seepage (if installed below a car park or other fuel vessels)
7. The option of storing water below ground should be provided as the last option if this impacts healthcare MEP systems and hospital operations or if the water supply along with the emergency power strategy is not reliable enough.

8. Tanks should be installed with a watertight bund allowing sufficient space all around and beneath the storage vessel to permit inspection and maintenance. For buried underground tanks the construction may not allow for risk elimination of the tank being contaminated.

9. The tank chamber should include provision for a sump to collect drainage water and any piping necessary to pump out tanks to the site drainage

10. During the healthcare design process, the healthcare facility may be required to constructed in phases. Phases may last months, years and sometimes maybe decades. The design engineer shall ensure that the actual size of the water tank is to be designed for the completed facility. The reason for this is for the following:

   • Risk of cross water contamination of providing multiple sources and risk to patient, visitor and operational staff safety.

   • Space planning restrictions

   • Laboratory Break Tank

   • Equipment costs of providing separate systems

   • Due to the risk of providing multiple water supplies at later stage as well as space planning requirements

5.10.2 Future Water Considerations

1. Many healthcare in Dubai expand their services. This expansion of services will require extra system capacity to be provided. The design engineer must provide a 15% spare water capacity to the system to allow for future expansion of the facility. This means that 15% must be added when submitting requirements to DEWA for water demand approval (Please
note that this 15% is on top of the water consumption requirements provide in Table 6.2A & 5.2B).

5.10.3 Material Tank Construction

1. As per international standards, the construction of the water of the tanks shall be Glass-reinforced plastic (GRP) as per BS EN 13280 if above ground. Tanks must be in a conditioned space. Tanks must not be exposed to external Dubai climates.

2. There shall 1m provision around all sides of the GRP tanks for equipment maintenance.

3. Raw Water Tanks can be concrete tanks buried or within a conditioned room.

5.10.4 Divisional Tanks

1. Maintenance in Dubai is very important concern. Buildings operate in a very extreme climate and thus critical equipment such as the healthcare facilities water tanks need to be maintained even during operating hours.

2. The water tanks support with the tank must not retain water within the supports. If so, these areas become localised areas of water stagnation and then the quality of the water within the tank will start to deteriorate and become a health concern. Water should be allowed to flow freely within the tank. Structural elements should ensure that this is the case.

3. The water storage tanks must always be divided into two compartments. These parts should be the total tank capacity divided into two (50/50 configuration).

4. This type of arrangement allows for one part of the tank to be cleaned, disinfected, serviced, repaired, inspected etc. while the other is in operation through healthcare operating times. This means that a water supply pipe will to be supplied to each part of the tank as per local requirements.

5. To ensure that the water flow is provided when required and that each tank is provided with equal volume of flow a water meter should be installed as well as a solenoid valve linked to
the ball float or chain valve.

6. In each section of the divisional tank the following needs to be provided:

- An Isolation Valve at the inlet and outlet of the tank division.
- A Valve Strainer at the outlet of each tank division.
- Drain Connection at the bottom of each tank. The invert of the drain should be located to fully drain that division of the tank.
- Over flow pipe from each division of the tank. Overflow connection to be connected directly to drainage
- Over Flow warning pipe with insect protection screen (0.65mm mesh – design needs to ensure that the screen area will pass the same amount of water as the overflow or warning pipe)
- An External and Internal Access ladder of the tank division.
- A vent pipe with an air inlet corrosion resistant mesh.

7. In certain circumstances, it may be difficult to install an over flow or a warning pipe directly to a drain line. In this instance, the design must include an audible warning alarm to inform the facility team of overflow scenario.

8. A Sectional GRP Tank should not be installed directly on a concrete plinth that is protected by an asphalt membrane. This is because irregular settlement into the asphalt may lead the tank leak.

5.11 Pressure vessels

1. Pressure (Expansion) vessels are designed to deal with the thermal (natural, not heated) expansion of the system. But for healthcare facilities they are a potential area for microbial colonisation. The requirements for pressure vessels need to ensure that the protection of
human health is maintained. This is done by preventing the possible transfer of taste and odour to the potable water system as well as ensuring that harmful substances into the potable water are prevented.

2. The materials for the pressure vessels varies from place to place depending on the local requirements. The most recognised certificate is the KTW (Germany & Netherlands/Holland) approved certificate. For example, KTW provides guidelines for organic materials in contact with water. They provide the concentration of substances that are permitted.

3. The installed pressure vessels must have certification and are installed as per manufactures specifications. This ensures that they are operated in a manner that prevents the accumulation of debris, water stagnation and increase of water temperature within the vessel.

4. The design of the pressure vessel must have water entering the vessel at low level and exiting at high level. Some manufactures use special valves which encourage water flow or pressure movement within the pressure vessels, this is an acceptable alternative.

5. For general pressure vessels for medium to large systems, there must be drain connections for flushing at the top and bottom of the vessel. If a diaphragm/bladder type expansion vessel is used, then only at the bottom of the vessel.

6. Pressure vessels must be provided on the cold potable water side of the system and the pipes to the vessel should be insulated to minimise heat gain.

5.12 Water Treatment Systems

1. In healthcare facilities the treatment of water and the control of microbiological safety of water is an important functionality to ensure a safe, hygienic clean water provision.
2. The extent of water treatment will vary for each application depending on water quality, intended usage etc. But the source of water supply is also important to identify the type of water treatment to be used. Source of water supplies such as “Wadeez”, Wells, Reservoirs, Rivers and Lakes may contain organic matter, higher TDS/PPM and will require water treatment prior healthcare operator active facility use.

3. Generally, to control microbiological growth within water systems, temperature, chemical and mechanical control methods will be enforced to reduce the risk of water contamination. The methods that will be used are the following:
   - Pasteurisation
   - Chemical Treatment (Biocides, Chlorine etc)
   - Silver-Copper Ionisation
   - Filtration

4. Depending on the type of healthcare and departments the water treatment strategy needs to be considered for current hospital departmental plan, design and possible future expansion. For example, of haemodialysis department, a separate mains water supply must be considered so that other areas of the healthcare facility may be dosed without affecting the RO plants.

5.12.1 Pasteurisation Treatment

1. Pasteurisation or water heat treatment flashing of the system is a method used in some healthcare facilities by raising the water temperature of the hot water system to 70-75°C for at least 60mins and running each sanitary fitting within the facility for 5mins. A well-insulated system is required so that heat is maintained to all sanitary fixtures. This is a temporary solution and does not prevent re-infection of the system. This method must not be used for new facilities.
2. Existing facilities may only use this method as a temporary solution but will need to install a permanent water treatment method. This method is costly and huge waste of electricity and water as well as it will require complete shutdown of all sanitary fixtures for 5mins, which will be very difficult or impossible for medium to large for facilities, but for smaller facilities it may be possible.

3. In relation with this method and biocide water treatment, the effectiveness of biocides concentration is difficult to achieve in hot water systems due to gassing off.

5.12.2 Biocidal treatment

1. Biocide treatment used for water treatment should be done with the lowest concentration to protect patients within healthcare facilities. The concentration should be as per international requirements for healthcare facilities.

2. The concentration levels should be as per UK COSHH regulations 2002.

3. Since Legionella and other water contamination organisms play a huge part of water quality, there are occasions where biocide water treatment will be used to maintain the water quality. But the engineering designer needs to understand that water treatment for healthcare facilities is very complex and depending on the use and departments one may have multiple water treatment methods for a single facility.

4. It is important that biocides system must not be drawn for bathing, food preparation or drinking until the treatment chemical has been completely flushed from the system. The hospital operator must ensure that that measures are taken to protect vulnerable patients such as those in renal dialysis units.

5. As per international standards, biocides used for water treatment must have the following:
   - Contain an active substance approved for that use
   - Be suitable for drinking-water use.
6. For effective biocide water treatment, there must be an implementation of a very rigorous water monitoring regime with a fail-safe system to ensure the safety of the system as well as ensure the correct dosing of biocide concentration is applied which reduces risk of water contamination.

7. Local monitoring will still be required by healthcare operational staff.

8. The equipment supplying biocide water treatment shall be provided with a leak detection system.

9. If the concentration of biocide treatment increases and caused the water to be unwholesome water a separate line will need to be labelled provided that is wholesome and labelled as such, especially certain departments such as neonatal feeds etc.

10. As described by the European Union Biocides Regulation 528 (2012), biocides are used to control harmful unwanted organisms within water systems. The regulations also require supplies of biocide to be registered. This registration must in accordance with DEWA requirements.

5.12.3 Chlorine dioxide

1. Chlorine dioxide water treatment is an oxidising biocide that is capable of reacting with a wide range of organic substances within the water. As per BS EN 12671, the treatment method has been shown to effective to control organisms within the water. Chlorine-dioxide water treatment equipment is a dispersive water treatment method and the equipment needs to generate a product efficacy greater than 90% to provide the optimum performance. Hence, since it’s a dispersive treatment method, bacteria in the water continue to be killed.

2. As per international legionella control requirements, Chlorine Dioxide is an approved method of control for legionella bacteria in water systems for PPM values greater than 0.1 and for DWI requirements of less than 0.5 PPM for total oxidants. But as mentioned for biocide
treatment, it will require rigorous control and monitoring.

3. Chlorine Dioxide is also a very powerful disinfectant that kills both planktonic and sessile organisms. This is important as the majority of organisms live in sessile bacteria.

5.12.4 Chloramine Water Treatment

1. Healthcare operators and healthcare engineering designers must take note that DEWA may have introduced chloramine as a disinfecting agent in potable water supply network as alternative to chlorine. This is because chloramine is able to provide a more stable approach of providing a residual antibacterial activity with lower chlorine levels. In systems, where free chlorine is rapidly lost, such as typical hot and cold-water service systems, chloramines can remain for much longer, which is of grave concern for dialysis patients and their respective departments.

2. Chloramines and to a lesser extent chlorine in dialysis water can cause haemolysis – a condition whereby red blood cells are ruptured. In addition, all renal patients suffer from anaemia to some extent because they are lacking in erythropoietin. This natural hormone, which stimulates bone marrow to produce red blood cells, is not available in sufficient quantities in patients with damaged or diseased kidneys. Synthetic erythropoietin is administered to dialysis patients but, apart from its high cost, can have unpleasant side-effects. Where chlorine or chloramines are present, the need for erythropoietin escalates, and therefore it is imperative to eliminate chlorine and chloramines from water supplies to dialysis equipment to minimize the dosage of erythropoietin. Dialysis requires a water supply that has the minimum of chemical and bacterial impurities. Hence, special water treatment is required, such as reverse osmosis (RO), which removes chloramines or chlorine from the water.

3. For Water Supply using Chloramines a Reverse Osmosis water treatment will need to be
used, along with non-chemical water treatment (Copper-Silver Ionisation and Ultra Violet Water Treatment).

4. The use of deionisation should not be used for a water treatment method for the entire facility or as the sole water treatment method. This is because of the following:
   - There is some reduction of chloramines (not all)
   - The quality of water is at a high grade by degrades very quickly that the water will have to be deionised once more.

The water quality shall be as detailed in table 5.5 below.

5.12.5 Water Softener

1. Water Softening is used in areas where the quality of water is not suitable for its intended use. For example, hard water areas where the Calcium and Magnesium salts in the water are high, means that scale deposits in the systems equipment and pipework become a concern as they reduce the flow of the system, efficiency and increase the surface area of biofilm.

2. In healthcare facilities water softening is used in water to serve the following equipment within a facility:
   - Copper-Silver Ionisation Water Treatment
   - Steam Boilers
   - Laundry Area
   - Hot Water Systems

3. International Studies have shown some concern with cardiovascular disease tends to be higher in areas with soft water supplies than in areas with hard water supplies. The association is clearest where the soft water supplies contain hardness below about 150 mg/L (as CaCO3). Therefore, the correct water softening regime is necessary to remove any
risk to patient within those healthcare facilities, especially in areas where the water supply will be used for drinking water (including LDR Nurseries for baby bottle feeding) and kitchen washing facilities.

**Recommendation:** If it is considered essential to provide water softening to drinking water and kitchen areas, then the softening must be maintained to a minimum and the manufacturer must be informed to provide the correct disinfection regime of the water softener.

### 5.12.6 Copper-Silver ionisation

1. Copper-Silver ionisation is a water disinfection system used for Legionella and other organisms that exist in contaminated water supply and storage. The system works by passing a current through a copper-silver plate and thus forcing the plate to release ions of Copper-Silver. The ions are used to control planktonic and sessile bacteria and effective against the formation of bio-film.

2. The concentration of Copper-Silver ratio must be as per the table below:

<table>
<thead>
<tr>
<th>Healthcare Facility Size</th>
<th>Copper-Silver Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small to Medium Facilities (RDL: 1-4)</td>
<td>10% Silver &amp; 90% Copper</td>
</tr>
<tr>
<td>Large Facilities (RDL: 5-6)</td>
<td>30% Silver &amp; 70% Copper</td>
</tr>
</tbody>
</table>

*Table 5.4 – Copper-Silver Ratio in Relation to Healthcare Facility Size*

Important Note: Ratio percentages does not mean an amalgam of the elements. It refers to the ratio of the elements to each other i.e. if 90% of Copper is 1 kg then 10% of silver is 0.1kg etc.

### 5.12.7 Reverse Osmosis Water Treatment

1. Reverse Osmosis (RO) is a type of water treatment process is one of the most widely used treatment process in healthcare facilities. It is the water treatment technology the removes a majority of contaminants within the water by applying pressure through a semi-permeable
membrane.

2. In healthcare facilities, RO water is required to be served to Renal Dialysis Units/Departments, SSU’s, Dirty Utilities (for washer sterilisers) and Laboratories.

3. The RO water requirements for healthcare facilities as well as the concentration of copper-silver ionisation in the water system must be as detailed in Table 5.1, except for dialysis units. For dialysis units, the quality of water shall be as per Table 5.5 below. The table is based on ANSI/AAMI 13959 requirements.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Maximum Allowable Level (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminants with Documented Toxicity to Hemodialysis</td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>0.2</td>
</tr>
<tr>
<td>Chloramines</td>
<td>0.1</td>
</tr>
<tr>
<td>Copper</td>
<td>0.1</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0.01</td>
</tr>
<tr>
<td>Lead</td>
<td>0.005</td>
</tr>
<tr>
<td>Total Chlorine</td>
<td>0.1</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>2</td>
</tr>
<tr>
<td>Sulfate</td>
<td>100</td>
</tr>
<tr>
<td>Sulfate</td>
<td>100</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Disolved Solids</td>
<td>5-1000</td>
</tr>
<tr>
<td>Trace Elements</td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>0.006</td>
</tr>
<tr>
<td>Arsenic</td>
<td>0.005</td>
</tr>
<tr>
<td>Barium</td>
<td>0.1</td>
</tr>
<tr>
<td>Beryllium</td>
<td>0.0004</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.001</td>
</tr>
</tbody>
</table>
Table 5.5 – DHA Water Quality Requirements for Dialysis Use

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium</td>
<td>0.014</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.0002</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.09</td>
</tr>
<tr>
<td>Silver</td>
<td>0.005</td>
</tr>
<tr>
<td>Thallium</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Microbiological Standards

<table>
<thead>
<tr>
<th>Colony Forming Units</th>
<th>Standards: &lt;100 CFU/mL</th>
<th>Action Level: ≥50 CFU/ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endotoxin Units</td>
<td>Standards: &lt;0.25 CFU/mL</td>
<td>Action Level: ≥0.125 CFU/ML</td>
</tr>
</tbody>
</table>

**Important Note:** For Microbiological Standards, the term standard refers to the acceptable microbiological level. The term Action Level refers to the testing protocol used to determine the bacteria level.

4. As can be seen from Table 5.5 above the concentration level of Copper & Silver is much lower than the standard mentioned in Table 5.1.

5. Copper-Silver Water treatment needs to be installed prior to the main treatment. This solution allows the treatment process to work best as well as encourage the water to remain at a high quality for a longer period.

6. Copper-Silver Ionisation also requires the water feeding it to be treated with softened water. This method prevents scaling.

**5.12.8 Ultraviolet treatment**

1. Chemical Water Treatment methods are used mainly as a dispersive treatment method. But non-chemical water treatment methods are used a final point of water treatment in healthcare facilities.
2. The function of the ultraviolet (UV) water treatment is to kill or deactivate the bacteria in the water. This is done by the UV light disrupting the natural make organic makeup of the bacteria. This technique is in sharp contrast to techniques such as high temperatures and chlorine dioxide which 'burn' the outside of the cell wall. For this technique to work successfully the correct UV wavelength must be selected. This is because different wavelengths of light are absorbed in different proportions and for this method to be successful, the UV light must be absorbed to cause the necessary disruption within the bacteria. Optimum wavelength for the destruction of biological matter occurs close to 254nm, and therefore it is important that the lamps used to provide UV light which is close to this ideal value. The process of killing bacteria, via this technique is often referred to as 'inactivation'.

3. Ultra Violet (UV) disinfection will be provided at the distribution side. System shall incorporate system sensor to monitor the effectiveness of the disinfection. For typical potable water applications, the target exposure dose is 400j/m² for a wavelength of 254nm (as mentioned above).

4. Hydrotherapy pools in healthcare facilities will have an exposure target of 400 j/m² for a wavelength of approx. 313nm.

5. All biological species require different levels of UV light to inactivate/kill them. For example, legionella pneumophilla, will die at relatively low exposures and others like pseudomonas, which can also cause problems, are more robust and do require a higher dose of UV light to inactivate them.

6. The UV water treatment plant shall be connected after the packaged cold-water tank and pumps. It shall incorporate a UV photo sensor to monitor the effectiveness of the disinfection. The output of every lamp will drop with time, typically lamps last between 11 months – 24 months (dependent on the lamp) for 24 hours of lamp operation and after it
will require replacement.

7. It should be remembered that all water borne bacteria, undesirable or benign, will enter the system via the incoming main, and despite the water suppliers care and diligence it is simply not possible to deliver water across the network in total sterility, thus the job of protecting the system starts with treatment of the incoming main. This treatment adds considerable value and security to the water handling process. Incoming water main must be treated.

5.12.9 Ozone Water Treatment

1. Ozone is a method of treatment that uses an unstable gas made up of 3 oxygen atoms and the active gas usually lasts only for a few milliseconds.

2. Ozone Water Treatment usually provides a good disinfection effectiveness any odour and taste from the water by reducing the concentration of elements such as iron and manganese.

3. An Ozone system consists of passing dry, clean air through a high voltage electric discharge, thus creating an ozone concentration. The raw water is then passed through a venturi throat which creates a vacuum and pulls the ozone gas into the water or the air is then bubbled up through the water being treated. The following are important part of ozone water treatment:

   • It rapidly reacts with the bacteria in the water and is effective on a wide range of PH values.

   • The Treatment process does not require to add chemicals to the water

   • It is unable to prevent or inhibit bacterial growth.

   • The system will require pre-treatment water plant to be installed before the unit.

   • There is a potential hazard of the system being fire risk as well as toxicity issues, which may raise approval concerns with Civil Defence.

4. In healthcare facilities, ozone water treatment needs to be used with a combination of other
water treatment means to element the weaknesses in the system and ensure continued operational clean system.

5. Many designers and hospital operators in the region are not familiar with ozone water treatment for healthcare facilities, but rehabilitation clinics that use hydrotherapy pools use this approach instead of the chemical cleaning system.

6. Ozone water treatment should not be used as the only source of water treatment for healthcare facilities but with a combination of other water treatment methods.

7. Oxygen Gas to this type of water treatment can be from the healthcare facility medical oxygen bulk supply (VIE Tanks or PSA Generation).

8. Pipe Material for this system shall be Stainless-Steel (316L).

5.12.10 Point-of-use filtration

1. Many small clinics within Dubai may use small point of use filtration systems to provide water treatment for pathogenic waterborne organisms including multi-drug-resistant strains, at a minimum.

2. If small clinics wish to proceed with this approach a risk assessment strategy must be conducted for the water treatment strategy. This strategy should be made to determine the sterilising grade of the filters installed with the filter by determining the bacteria retention and have a management strategy based upon that.

5.12.11 Multi-Media Filtration & Microfiltration

1. Multi-Media filtration (MMF) is the most common type of filtration system used generally in healthcare facilities, they ensure particles are removed as well as odour and taste from the water system used. Whereas, microfiltration removes small particles from the water post MMF use.

2. In healthcare the design of MMF should be as follows:
• Sand Filtration – Removing Particles down to 10microns (this includes turbidity/suspended solids as per WHO definitions)

• Carbon Filtration – Removing Odour & Taste from the Water

3. MMF suppliers and manufactures shall provide this approach in a two-vessel system, one for Sand Filtration and one for Carbon Filtration.

4. Microfiltration uses a bag & cartridge filtration method that removes particles of less than 10microns. This type of water treatment method needs to be maintained by the healthcare facility staff and bags need to be checked on a monthly basis. If the system is maintained correctly, bags should be changed between 6-12 months strategy.

5. Both water treatment methods are unable to prevent or inhibit bacterial growth. Therefore, this water strategy method must be used with other water treatment methods.

5.12.12 Distilled Water

1. Distilled water is the condensed purified water from condensed steam. Distilled water is provided for laboratory use in healthcare facilities.

2. Distilled water requires a RO water connection from the plant or DI water connection (depending on the requirements of the laboratory functions).

3. Due to the amount of distilled water used, this will be a local bench top unit and not a major plant or a centralised system.

5.13 Drinking Water

1. Some healthcare facilities may provide a separate water supply for drinking water fountains (as shown in Diagram 5.2). The quality of drinking water with Chemical treatment must be as per the requirements highlighted in Table 5.1 or as per DEWA requirements.

2. The chemicals used for water treatment for drinking water need to ensure that there have
no adverse effects for human consumption. Chemical products used have been provided in an approved list by the Drinking Water Inspectorate (DWI).

3. To prevent the drinking water system from stagnation and from the likelihood of temperatures exceeding 20°C (thus affecting the quality of water) the drinking water strategy shall will need to be provided from a central chilled water storage tank and pump made for drinking water purposes only.

4. Drinking water without a storage requirement must not be installed.

5. If a central drinking water system has not been provided, then a bottled water drinking water system shall be provided via a water cooler.

6. Bottled water coolers shall be provided with chilled and hot water capability but shall only be supplied with a dedicated single water supply (1 No.) designated for drinking purposes only.

7. In healthcare facilities pantry areas, there is a requirement for above bench or below bench hot water boiler/chiller unit (as per Part B of these Guidelines). These will be required to be supplied with a normal potable water supply (these units will have internal low level water treatment).

8. The water supplied shall already be treated as per the water treatment strategy for the hospital and it is not requirement that the supplied water be cooled cold water.

5.14 Specialist Water Systems Provisions

1. For healthcare facilities that are expanding their departmental services or providing new FPU's as part of the expansion, local water treatment solution shall be provided if the potable water supply is not treated. An example of this requirement is a new Dialysis unit or Endoscopy clean-up area etc.
2. For locally installed water treatment system, the connect from the main supply line to the treatment plant must be provided with a valve assembly set (DCV/BFP, PRV & IV's).

5.14.1 Hydrotherapy Pools

1. Water treatment for Hydrotherapy pools shall be a via combined water treatment system.

2. The intent of the water treatment system is to control the water mineral concertation. The combined water treatment system will be a combination of MMF and chemical water treatment or Ozone water treatment.

3. The treatment system shall be a backwash system that reuses the water within the pool.

4. Plant equipment must be installed according to manufacturer’s specifications and shall be located in close proximity to the Hydrotherapy Pool with easy access for staff to monitor and service the water treatment systems.

5. The water temperature of the pool needs to range between 28 to 35°C as per healthcare requirements. For most conditions being treated the optimum temperature is between 33-35°C.

5.15 Cold-Water & Cooled Cold-Water Distribution System

1. In healthcare facilities, the water system design relies heavily on the installation practices in any region. The installation practices determine the type of contingencies the water distribution should designed with.

2. The water design and installation should be as per Water Supply (Water Fittings) Regulations 1999 and relevant parts of BS EN 806-2 and BS 8558 (as mentioned by DEWA).

3. To maintain the chilled water conditions of the system for healthcare facilities and reduce the risk of heat gain, the pipework should be insulated. The installation should be a vapour seal type to avoid any condensation as per BS 5970.
4. Water Hammer Arrestors or Surge Water Arrestors should be connected to discharge to waste via appropriate type AA air gap as per BS EN 1717.

5.16 Cold Water & Cooled Cold-Water Booster Pumps

1. As part of the World Health Organisation Infection Control Strategy high flows are essential for hygienic hand washing. Healthcare facilities depend on high flows and constant pressure to ensure hygienic clean infection control strategy is maintained. Clinical fixtures need to be provided with the following:

2. The cold-water pressure range at fixtures shall be between the following:
   
   Minimum: 1.38 Bar (gauge)
   
   Maximum: 5.52 Bar (gauge)

3. The cold water piping maximum flow velocity shall be the following:
   
   Piping to 50mm: 1.5 meters per second (m/s)
   
   Piping 65mm and larger: 1.8 meters per second (m/s)

4. A pumped water system ensures that an inadequate water supply is not provided throughout the healthcare facility. To be in line with Dubai Green building code and Dubai local authority regarding energy saving methods, the potable water booster pumps must be variable driven speed pump system.

5. The booster pumps should be a multi-stage pumping system rather than a duty-standby single pumps system. This approach provides a longer system life with higher energy efficiencies as well as a wider range of flow rates for the facility.

6. As part of the healthcare facility resiliency strategy and to continue to provide the healthcare facility with clean, hygienic water, the booster pumps must be connected to the emergency power supply.
7. All booster pumps should have automatic control to prevent stagnation.

8. Many healthcare facilities may have higher occupant loads on upper floors, thus the pumping amount to these levels will be higher. This amount of pumped water should be controlled by transmitting sensors within the tanks at high level.

9. A low-level water alarm should also be provided so that the pump does not run dry.

10. The water pump and water storage plant room must be installed with a waterproof and non-dusting floor as well as and non-dusting walls and ceilings. The floors must fall to the dedicated floor drainage locations provided. The drainage floor gully should be provided with a trap. The trapped gully should incorporate provisions to either avoid or replenish any trap-water seal loss. In Dubai, traps are usually susceptible to evaporation, thus a to Primer valve must be installed (refer to Drainage (section 6) for more details).

5.17 Hot Water Strategy

1. As part of the infection control strategy for healthcare facilities, hot water is used to provided 2 types of systems to healthcare facilities:
   - Warm Water to Clinical Hand Wash Basins (Including Scrub Sinks) & General Hand Wash Basins
   - Hot Water to Clinical Sterile Areas, Kitchens, Maintenance Areas and Cleaners Sinks.

2. The Hot water system in healthcare facilities should be designed as outlined by BS 6700 (with respect to the Water Supply (Water Fittings) Regulations 1999, BS EN 806 (Parts 1–5), BS 8558 and BS EN 6700.

3. The potable water serving the hot water plant shall be treated via a finial water treatment method which is Ultraviolet, before connecting to the hot water system.

4. In Healthcare facilities hot water system can be vented or unvented systems.
5. Vented hot water system are usually the approach that was adopted in older healthcare facilities. This approach consists of a cold-water storage (open to atmosphere) provided above sanitary fixtures which feeds a hot water storage vessel. This approach is no longer accepted in new facilities.

6. Unvented hot water systems are connected to a boosted main line (network or internal water system) via a valve assembly set. Unvented Hot water cylinders must always be used of providing hot water in healthcare facilities. This strategy maintains the efficiency of the system by maintaining the water quality.

5.17.1 Types of Hot Water Generating Systems

1. There are four main type of hot water systems that are acceptable in healthcare facilities (they include direct and indirect heating methods) the following:
   - Electrical Hot Water Generation (Direct)
   - Fuel Burning Hot Water Generation (Indirect, Including Boiler/Steam)
   - Solar Hot Water Generation with a combination of one or both of the above (Direct & Indirect)
   - Heat Pump System

2. In the design of a healthcare facility, the redundancy and resiliency of a system is a of fundamental importance in the design that a combination of the above system will be used in healthcare facilities. Such as solar for initial water heating then a fuel hot water system for achieving the required temperatures.

3. In healthcare facilities, the design of the system must be provided with a backup water heating strategy along with the above mentioned hot water systems. Generally, the electrical heating element is the back-up to the other two systems, but it may also be the primary source of hot water generation.
4. Solar water system to be provided with a duty and standby system setup.

5. The hot water must be heated to a minimum of 65°C with one of the above-mentioned systems.

5.17.2 Hot Water Storage & System

1. The water storage temperature must be kept at minimum of 60 - 65°C to any prevent bacterial growth within the stagnant water.

2. Energy conservation is achieved with an integral thermostat set between 60- 65°C and return water temperature is to be from 50 – 55°C.

3. The domestic hot water pressure range at fixtures shall be between the following:
   - Minimum: 1.38 Bar (gauge)
   - Maximum: 5.52 Bar (gauge).

4. Many healthcare facilities in Dubai use instantaneous hot water system approach by having an electrical hot water generation locally to the department or sometimes to each wash hand basin. This approach not only has huge capital costs on purchasing the units but on the operational costs also.

5. Having local small hot water generators does have its advantages over a large central storage system. They are easier to maintain and provide a quicker hot water temperature provision. Furthermore, balancing the hot water system becomes much easier and less of a problem. This approach also wastes a lot of energy and moves away from the sustainable approach of Al-Sa’fat Dubai Green Building Code. Most of hot water generated is heated but not used as the basin is only used for approximately 30 seconds.

6. A central hot water system is the best approach for healthcare facilities.

7. A hot water return should always be provided to the central hot water system, unless provided with electrical trace heating tape.
8. A central hot water system encourages a low risk of infection concerns for healthcare facilities.

5.17.3 Hot water Return Approach

1. Hot water return systems are used to ensure that water temperatures to each of the sanitary fixtures are provided with the appropriate temperature and it ensures that the initial heat generated from the hot water flow is used once again as part of the main hot water system.

2. A balancing valve is to be provided on the hot water return system.

3. The hot water return is to ensure hot water is provided almost instantly when needed, keeps water consumption low and prevents bacterial growth within the hot water system.

4. All hot water supply pipes shall be insulated with flame-safe moulded pipe insulation, having a factory-applied jacket suitable for temperature increase.

5. The hot water return connection shall be as close to the sanitary fixture as possible. This allows for hot water to be achieved between 10-20 Seconds.

5.17.4 Direct Hot Water Approach

1. Direct hot water system approach can be used. This may be provided in RDL5-6 facilities where the return system may take longer to return to the central hot water plant.

2. The direct approach will require a hot water system pumps and the pipes to be trace heated to maintain the hot water temperature of the system.

3. The trace heating ensures that the hot water is maintained at a minimum temperature of 50°C.

4. All hot water supply pipes shall be insulated with flame-safe moulded pipe insulation, having a factory-applied jacket suitable for temperature increase.
5.17.5 Hot water temperatures

1. In healthcare facilities, the provision of a hot water is required for several healthcare operational needs and systems, such as the following:
   - Main Facility Kitchen
   - Food Preparation Areas
   - Facility Laundry
   - Clinical Service Areas

2. The remaining areas outside these areas will depend on the operational policy of the healthcare facility provider.

3. For the areas mentioned to be provided with hot water for a single hot water supply to a fixture, the draw-off water temperature must be a minimum of 50°C and a maximum of 55°C.

4. Hot water temperatures must be achieved within a certain timeframe as per BS 6700.

5. This requirement is to ensure that appropriate control of microbial elements in hot water systems is in place. For 50°C, this water temperature must be achieved within 30 seconds and for 55°C, this temperature must be achieved within 60 seconds.

5.17.6 Hot Water Plant Safety Blow Down (Air Vent)

As part of the healthcare facility infection control strategy, it is important to preserve the quality of the stored water. The previous practice was to provide a vent pipe to terminate back into the hot water storage vessel. This approach is no longer permitted. The vent should be arranged to discharge over a separate air-break-to-drain (tundish) and then to a floor drain as per BS EN 1717.

5.17.7 Instantaneous Water Heaters

1. Generally, instantaneous hot water heaters are susceptible to scale formation in hard water areas, where they will require frequent maintenance. If the design engineer wants to include such a system, they must ascertain the water quality being provided to the healthcare facility.
Furthermore, if the system is to be used for shower areas the system should be thermostatically controlled and provided with a BEAB mark of approval.

2. Instantaneous hot water heaters may only be used for RDL 1-3 healthcare facilities.

### 5.17.8 Hot Water Storage Calorifiers

1. Storage calorifiers are usually cylindrical vessels mounted either vertically or horizontally; the base of the vessel usually where the heating element is located or where there is an indirect heat exchange. Sometimes areas below the element can have a lower water temperature than the heated water above. This area can provide an ideal breeding ground for bacteria.

2. Galvanised type cylinders are particularly susceptible to scale formation, which can also provide a source of nutrition and shelter for bacteria. Therefore, galvanised cylinders are not allowed in healthcare facilities.

3. The storage water cylinder lining should be resistant to bacterial growth.

4. Storage requirement for hot water should be based on the peak water usage with a 24-hour usage. As mentioned earlier in these guidelines, there may be multiple peak demand areas. Therefore, it is important that the issue of vessel stratification is dealt with.

5. Many storage vessels suffer from stratification, where the lower part of the vessel has not reached the higher part of the cylinder water temperature of 60-65°C. The lower levels provide a breeding ground for legionella bacterial growth. Therefore, destratification pumps attached/mounted in the cylinder are to be provided in larger vessels.

### 5.17.9 Hot Water circulating pump

1. For all healthcare facilities, the hot water circulating pumps have been installed on the hot water flow side or the hot water return side. When installed on the flow or return the connection is provided with a valve assembly set along with a bypass and where the pump is
mounted or connected.

2. In healthcare facilities, the type of pump installed is important. For example, duplex pumps should not be installed as the purpose of the system is to keep circulating to maintain water temperature. But rather a clean dry standby pump should be provided or a permanently installed standby pump should be made available.

5.18 Water System Isolation Valves

1. In healthcare facilities, it is important that the design provides a strategy for future maintenance as well as system durability. Isolation valves are to be fitted before entering main sanitary fixtures in toilets, clinical departments etc. Please note that for the design or maintenance of the design, these isolation valves should not be used for balancing the system flow rates.

5.18.1 Thermostatic Mixing Valves

1. As mentioned previously, the provision of Hot water service to sanitary fixture is very important as it promotes an infection control regime. However, the discussion of temperature at outlets in healthcare facilities is very important. In healthcare facilities there is a risk of scalding (water burning) for vulnerable patients and ensuring that that scalding does not affect them, the hot water service needs to be blended down to warm conditions with a use of a thermostatic mixing valves (TMV). There are three main types of TMVs; TMV-01, TMV-02 and TMV-03. TMV-03 is the type of valve that must be installed in healthcare facilities. While the other two are for a more domestic type of installation and operate at a lower operating pressure than TMV-03.

2. In healthcare facilities wash hand basins and scrub sinks will be provided with a TMV that allows outlet temperature control. This limits the maximum temperature of water delivered from the basin taps. Diagram 5.3 below provides a brief detail on the installation of a TMV
to a basin.

3. Not all sanitary fixtures will require TMV's. Some sanitary fixtures such as stainless-steel sinks in dirty utilities, clean up rooms, kitchens need a higher temperature requirement. All areas not used for hand washing facilities i.e. any tap outlet to other fixtures other than a wash hand basin (such as dirty utility, clean utility, pantry and kitchen etc.) shall not have TMV's installed. Diagram 5.3 below provides a brief detail of the installation without a TMV.

![Diagram 5.3 – Location of TMV in relation to Sanitary Fixture](image)

4. In recent years, sanitaryware manufacturers have provided a combined TMV and sanitary tap into a single fitting. Some of these are as per healthcare requirement and some are not. The fittings that in contact with the water being discharged must be WRAS approved or equivalent.

5. TMV's, along with the hot water return should always be installed as close as to the sanitary fixture as possible to remove any dead leg concerns as many of facilities have high ceilings.
and long runs (maximum 3m from the basin).

6. Close location of the TMV to the sanitary fitting ensures ease of maintenance.

7. Table 5.5 below provides the water temperatures required for sanitary fittings required to be installed with a TMV-03 (this must have an enhanced performance testing certificate of D08).

<table>
<thead>
<tr>
<th>Healthcare Areas &amp; Fixtures</th>
<th>Maximum Recommended Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Showers &amp; Hair Washing Facilities</td>
<td>41</td>
</tr>
<tr>
<td>Unassisted Baths</td>
<td>44</td>
</tr>
<tr>
<td>Baths for Assisted Bathing</td>
<td>46</td>
</tr>
<tr>
<td>Bidets and Hand-Held Shatafs</td>
<td>38</td>
</tr>
<tr>
<td>Any Basin</td>
<td>38-41</td>
</tr>
</tbody>
</table>

Table 5.5 – TMV location and Maximum Temperatures

8. For assisted baths and areas, water temperature is to be monitored and checked by hospital operational staff (Medical or Non-Medical Staff).

9. Some facilities may wish to provide higher temperatures than the above recommended maximum temperature value. If healthcare operators wish to do so, then a safe means must be provided to prevent access to these areas by vulnerable patients.

5.19 Healthcare Sanitary Fittings

1. Healthcare requirements for sanitary fittings differ from other commercial facilities. The goal is always an infection free, safe, hygienic environment for all users (vulnerable users in particular).

2. International Water Supply Regulations places limits on water draw of and requirements to prohibit basin or sink waste plugs (blocker), therefore no drainage waste plugs shall be provided for all sinks and basins.
3. Providing an overflow or a waste plug provides an environment for bacterial growth and infection infringement concern. No overflow hole shall be provided for all sinks and basins.

4. In healthcare facilities sensor taps should be used for basin washing facilities or as per Part B of these Guidelines.

5. The sensor tap solenoid valve is to be checked at least once a month.

6. Since legionella is most dangerous in its spray form and can live in the system at any time, spray-type mixer taps are prohibited in healthcare facilities.

7. Water flow from the mixer tap should fall in such a way that it forms a shape around the basin discharge area.

8. The basin spout should not discharge directly over the waste drain or in an area that causes splashing.

9. Some sanitary mixing taps have flow restrictors and aerators at the point of discharge. Flow restrictors or aerators shall not be provided for basins or sinks in healthcare facilities. These tend to be locations where bacterial growth can occur as well as restrict high flows required for healthcare washing requirements.

10. Showers in healthcare facilities are generally provided with an integral TMV along with the shower mixing valve.

11. Shower heads should not be installed with adjustable spray option around the shower head. This type of issue leads to water stagnation issues.

12. Moveable flexible hose type systems should be provided with a back-flow prevention valve and should be selected on ease of descaling and disinfection.

13. The purpose of having a back-flow prevention on hose type fixtures such as ‘Shataf’ bidets and hose showers is to ensure that submersion of the units into a WC or floor drains does not contaminate the supply system.
14. Hand held Bidets or ‘Shatafs’ should be served from the same water supply serving wash hand basins. They must not be served from water supply lines serving WC’s (unless this is the same line serving the basins).

5.20 Irrigation Water Supply

1. For healthcare facilities, the irrigation system needs to be split into two different systems.
   - Internal and external landscape areas where patients, staff and visitor will be loitering.
   - Internal and external landscape areas where there will not be any patient, staff and visitor loitering

2. Water used for irrigation shall be served from a dedicated irrigation water tanks for each area mentioned above.

3. The internal irrigation system is prohibited to be served with a TSE water supply to areas described in section 5.19-1(a) above.

4. Irrigation to areas described in section 5.19-1(a) can only be served with clean potable water supply (Non-Cooled).

5. Irrigation to areas described in section 5.19(b) can be served with TSE water from STP plant or treated condensate water supply (or both).

5.21 Grey Water (WC Flushing Only) & WC Flushing Systems (Non-Chilled Systems)

1. Grey water strategies are generally avoided for healthcare facilities, due to the level of water treatment is sometimes not sufficient to be used with the healthcare facilities. But they maybe times where Due to the local water requirements and local water shortages, strategies have been provided within this design to allow for water to be re-used. Dubai Al-Sa’fat Green Building Code requirements encourage the use of a grey water system, therefore grey water systems are allowed but only for the following systems:
• Non-loitering Irrigation Areas

• WC Flushing Systems

• Maintenance Bib Tabs

2. All other areas except for the areas mentioned above (5.20-1) shall not be provided with grey water service.

3. The following sources can be used for grey water systems:

4. Water from Basins, Showers, Floor drains that have been treated (Waste-Water Drainage) and RO Water Rejection Water

5.22 Steam System

1. There are three types of steam services provided for any healthcare facility and they are the following:

   • Plant Steam – A steam supply service used for Healthcare facilities Laundry and food and beverages area

   • Clean Steam – A steam supply service used for healthcare laboratories and sterile store units (SSU)

   • Pure Steam – A steam supply used for high grade healthcare facilities or biotech or pharmaceutical laboratories.

2. In healthcare facilities, the quality of steam will depend upon the application it will be used for and this will be known for the healthcare briefing provided by the healthcare facility operator. The water quality serving the steam system must be treated (including softened water in some cases to reduce the mineral deposits in the system).

3. Plant Steam and Clean Steam are main type of services that will be used in healthcare facilities.
5.22.1 Source of Steam System

1. There will be two types of sources for the steam system used for healthcare sterile services and they are the following:
   - Central Steam Boiler System
   - Local or Central Electric Generation Steam Boiler

2. Both systems will provide any healthcare facility with the quality of steam they require, depending on the water quality supply into the system.

5.22.2 Plant Steam

1. Plant steam is based on having central local plant serving the healthcare facility. This system then serves multiple applications.

2. The steam system must have chemical additives added to control the pH level of the steam as well as the foaming of the water.

5.22.3 Clean Steam

1. Clean steam requires a supply of specialised treated water such as RO or DI water.

2. The production of clean steam contains no dissolved minerals on surfaces of cleaned items.

3. Where medical equipment requires steam supply, it shall be clean steam.

4. Clean Steam provision is required for Medical Equipment that requires steam.

5. Medical Equipment with integrated steam generators shall be provided with RO or DI water service to generate clean steam.

5.22.4 Steam System Pipe Materials

1. Piping must be stainless-steel due to the quality of the water and its contents.

2. Stainless-Steel is a non-reactive metal and is able to resist corrosion as well as being a hard metal.
3. Other types of metal such as copper are more active metals and they leach when in contact with this level of water quality and thus they lead to corrosion of the metal.

4. Plastic Pipes or FRP are not allowed for steam service pipes.

5.22.5 Central Steam Generation vs Local Steam Generation

1. While the option is the most economical to operate a central steam generation plant it is not the most efficient type of system for healthcare facilities. Having a local generation makes the system resilient against any failures as the local generation is intended for a single unit and purpose. If unit fails, the parts are easily repaired or replaced, whereas failure of the central steam plant system will have devastating impact on healthcare facility operation.

2. Some healthcare operators may use a combination of both systems. A combination of both systems should only be used for the following reasons:
   - Redundancy – Having the local steam generators be a backup set of steam generation
   - Sterilisation Speed – Increase the Sterilisation speed by having the incoming steam at a lower temperature and the integral unit being the second stage of steam (this will require advance control strategy)

3. Both steam generation methods can be used for healthcare facilities, but proper maintenance must be provided to the units.

4. Steam equipment serving SSU areas to be provided with equipment backup.

5.23 Public Health Maintenance

1. In healthcare facilities, it is crucial to have a maintenance strategy to maintain the quality of the system along with a fully qualified team.

2. A maintenance strategy to be provided to entail who is responsible for cleaning the water tanks, checking the water treatment filters and equipment operation as well as the water
temperature and quality of the water system.

3. Water tanks are to be cleaned on a weekly basis. The water tank must be a divided water tank that allows the system to operate for least 12 hours without incoming water. All cleaning within the tank must be completed within that time.

4. Post treatment tanks cleaned after the water treatment process (except UV water treatment) must be cleaned to a level where large particles have been removed as reasonably as possible.

5. After the tanks or water treatment systems have been cleaned, the healthcare operator will need to observe the water system for 24 hours to ensure for the system is fully clean, safe, and hygienic for the healthcare facility.

6. For hot water systems, the maintenance team must have a strategy in place to check the hot water heating element being used. This can usually be done monthly via the access manhole provided by the element.

7. For steam, correct healthcare design and maintenance of the system is needed. This will allow for a successful steam sterilisation outcome to the required healthcare areas. Maintenance tasks should ensure that wet packs are minimised, equipment staining, and chamber scale is minimised in the system.

8. The maintenance team for the facility must be familiar with water maintenance strategy as well the equipment installed within the facility.

### 5.24 System Configuration

1. Diagram 5.4 below provides a detail line schematic layout of the potable water system. Not elements in the system are used. The scheme below provides a system with all the complete requirements.
Diagram 5.4 – Water System Configuration